Home » Articles » structural properties of spider webs - Article View

structural properties of spider webs - Article Description

Author Name: anusha

About The Author
i am studying betch 4th year and my group is cse

structural properties of spider webs
Although much research has been done on spider silk as a high-performance fiber, much less is known about the structural mechanical properties of webs. In a recent study, Aoyananagi and Okumura, both from Ochanomizu University in Tokyo, Japan, have developed a model that explains the mechanical adaptability of spider orb webs. As the most familiar web form, orb webs have features that are universal to many spider species, suggesting that they have beneficially evolved by natural selection. By better understanding the unique structural properties of spider webs, researchers could apply the information to other areas, such as designing buildings, bridges, and space structures. As the researchers explain, orb webs consist of two kinds of threads: radial threads radiate out from the center of the web, while spiral threads connect the radial threads together to form the familiar circular pattern. Previous research has shown that the radial threads are significantly stronger than spiral threads, which is due to radial threads’ greater thickness, chemical composition and microscopic structure. When completed by a spider, the entire spider web is under tension. In the physicists’ model, the force distribution is such that the threads with the maximum force are the radial threads located at the outmost parts of the web. The scientists also found that, for a typical web, spiders can change the number of radial or spiral threads without reducing the strength of the web. This versatility is likely very useful for spiders to adapt the web to various environments, such as in areas with few places on which to attach radial threads. Or, when a spider wishes to make the web denser to catch smaller insects, it can spin more spiral threads without significantly increasing the maximum force. Aoyananagi and Okumura also investigated what happens when one of the spiral threads is damaged in an otherwise intact web. In most structures made of elastic materials, the force gets redistributed when damage occurs, and a stress concentration occurs near the damage, which weakens the overall structure. However, in a spider web, the force distribution remains unchanged when any spiral thread is broken, and the web retains its strength. The scientists attribute this damage tolerance to the web’s hierarchical design, which they hope to model in greater detail in the future.



This Page has been currently rated as:
Rate this Page :    [ 0  votes]




College Events

Get the latest events
all over india

Internships & Jobs

The easiest way to connect
campus and industries

Study Abroad

The easiest and fastest
way to go abroad

Current Affairs

Get all latest News from
india and the world
Not a Member yet? Join Now | Login